OwlCyberSecurity - MANAGER
Edit File: numbers.cpython-33.pyc
� ��f�(��c���������������@���s����d��Z��d�d�l�m�Z�m�Z�d�d�d�d�d�g�Z�Gd�d����d�d �e��Z�Gd �d����d�e���Z�e�j�e���Gd�d����d�e���Z �e �j�e ���Gd�d����d�e ���Z�Gd �d����d�e���Z�e�j�e ���d�S(���u~���Abstract Base Classes (ABCs) for numbers, according to PEP 3141. TODO: Fill out more detailed documentation on the operators.i����(���u���ABCMetau���abstractmethodu���Numberu���Complexu���Realu���Rationalu���Integralc�������������B���s&���|��Ee��Z�d��Z�d�Z�f��Z�d�Z�d�S(���u���Numberu����All numbers inherit from this class. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number). N(���u���__name__u ���__module__u���__qualname__u���__doc__u ���__slots__u���Noneu���__hash__(���u ���__locals__(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���Number���s���u ���metaclassc�������������B���s|��|��Ee��Z�d��Z�d�Z�f��Z�e�d�d������Z�d�d����Z�e�e�d�d��������Z �e�e�d�d ��������Z �e�d �d������Z�e�d�d ������Z�e�d�d������Z �e�d�d������Z�d�d����Z�d�d����Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d �d!������Z�e�d"�d#������Z�e�d$�d%������Z�e�d&�d'������Z�d(�d)����Z�d*�S(+���u���Complexua��Complex defines the operations that work on the builtin complex type. In short, those are: a conversion to complex, .real, .imag, +, -, *, /, abs(), .conjugate, ==, and !=. If it is given heterogenous arguments, and doesn't have special knowledge about them, it should fall back to the builtin complex type as described below. c�������������C���s���d�S(���u<���Return a builtin complex instance. Called for complex(self).N(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__complex__-���s����u���Complex.__complex__c�������������C���s ���|��d�k�S(���u)���True if self != 0. Called for bool(self).i����(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__bool__1���s����u���Complex.__bool__c�������������C���s ���t����d�S(���uX���Retrieve the real component of this number. This should subclass Real. N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���real5���s����u���Complex.realc�������������C���s ���t����d�S(���u]���Retrieve the imaginary component of this number. This should subclass Real. N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���imag>���s����u���Complex.imagc�������������C���s ���t����d�S(���u���self + otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__add__G���s����u���Complex.__add__c�������������C���s ���t����d�S(���u���other + selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__radd__L���s����u���Complex.__radd__c�������������C���s ���t����d�S(���u���-selfN(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__neg__Q���s����u���Complex.__neg__c�������������C���s ���t����d�S(���u���+selfN(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__pos__V���s����u���Complex.__pos__c�������������C���s ���|��|�S(���u���self - other(����(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__sub__[���s����u���Complex.__sub__c�������������C���s ���|��|�S(���u���other - self(����(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rsub___���s����u���Complex.__rsub__c�������������C���s ���t����d�S(���u���self * otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__mul__c���s����u���Complex.__mul__c�������������C���s ���t����d�S(���u���other * selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rmul__h���s����u���Complex.__rmul__c�������������C���s ���t����d�S(���u5���self / other: Should promote to float when necessary.N(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__truediv__m���s����u���Complex.__truediv__c�������������C���s ���t����d�S(���u���other / selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rtruediv__r���s����u���Complex.__rtruediv__c�������������C���s ���t����d�S(���uB���self**exponent; should promote to float or complex when necessary.N(���u���NotImplementedError(���u���selfu���exponent(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__pow__w���s����u���Complex.__pow__c�������������C���s ���t����d�S(���u���base ** selfN(���u���NotImplementedError(���u���selfu���base(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rpow__|���s����u���Complex.__rpow__c�������������C���s ���t����d�S(���u7���Returns the Real distance from 0. Called for abs(self).N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__abs__����s����u���Complex.__abs__c�������������C���s ���t����d�S(���u$���(x+y*i).conjugate() returns (x-y*i).N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���conjugate����s����u���Complex.conjugatec�������������C���s ���t����d�S(���u ���self == otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__eq__����s����u���Complex.__eq__c�������������C���s���|��|�k�S(���u ���self != other(����(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__ne__����s����u���Complex.__ne__N(���u���__name__u ���__module__u���__qualname__u���__doc__u ���__slots__u���abstractmethodu���__complex__u���__bool__u���propertyu���realu���imagu���__add__u���__radd__u���__neg__u���__pos__u���__sub__u���__rsub__u���__mul__u���__rmul__u���__truediv__u���__rtruediv__u���__pow__u���__rpow__u���__abs__u ���conjugateu���__eq__u���__ne__(���u ���__locals__(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���Complex ���s0��� c�������������B���s=��|��Ee��Z�d��Z�d�Z�f��Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d ������Z �e�d$�d �d�����Z�d�d ����Z�d�d����Z �e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�d�d����Z�e�d�d������Z�e�d �d!������Z�d"�d#����Z�d$�S(%���u���Realu����To Complex, Real adds the operations that work on real numbers. In short, those are: a conversion to float, trunc(), divmod, %, <, <=, >, and >=. Real also provides defaults for the derived operations. c�������������C���s ���t����d�S(���uT���Any Real can be converted to a native float object. Called for float(self).N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__float__����s����u���Real.__float__c�������������C���s ���t����d�S(���uG��trunc(self): Truncates self to an Integral. Returns an Integral i such that: * i>0 iff self>0; * abs(i) <= abs(self); * for any Integral j satisfying the first two conditions, abs(i) >= abs(j) [i.e. i has "maximal" abs among those]. i.e. "truncate towards 0". N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__trunc__����s����u���Real.__trunc__c�������������C���s ���t����d�S(���u$���Finds the greatest Integral <= self.N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__floor__����s����u���Real.__floor__c�������������C���s ���t����d�S(���u!���Finds the least Integral >= self.N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__ceil__����s����u ���Real.__ceil__c�������������C���s ���t����d�S(���u����Rounds self to ndigits decimal places, defaulting to 0. If ndigits is omitted or None, returns an Integral, otherwise returns a Real. Rounds half toward even. N(���u���NotImplementedError(���u���selfu���ndigits(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__round__����s����u���Real.__round__c�������������C���s���|��|�|��|�f�S(���u����divmod(self, other): The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. (����(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__divmod__����s����u���Real.__divmod__c�������������C���s���|�|��|�|��f�S(���u����divmod(other, self): The pair (self // other, self % other). Sometimes this can be computed faster than the pair of operations. (����(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rdivmod__����s����u���Real.__rdivmod__c�������������C���s ���t����d�S(���u)���self // other: The floor() of self/other.N(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__floordiv__����s����u���Real.__floordiv__c�������������C���s ���t����d�S(���u)���other // self: The floor() of other/self.N(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__rfloordiv__����s����u���Real.__rfloordiv__c�������������C���s ���t����d�S(���u���self % otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__mod__����s����u���Real.__mod__c�������������C���s ���t����d�S(���u���other % selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rmod__����s����u ���Real.__rmod__c�������������C���s ���t����d�S(���uR���self < other < on Reals defines a total ordering, except perhaps for NaN.N(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__lt__����s����u���Real.__lt__c�������������C���s ���t����d�S(���u ���self <= otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__le__����s����u���Real.__le__c�������������C���s���t��t�|������S(���u(���complex(self) == complex(float(self), 0)(���u���complexu���float(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__complex__����s����u���Real.__complex__c�������������C���s���|�� S(���u&���Real numbers are their real component.(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���real����s����u ���Real.realc�������������C���s���d�S(���u)���Real numbers have no imaginary component.i����(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���imag��s����u ���Real.imagc�������������C���s���|�� S(���u���Conjugate is a no-op for Reals.(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���conjugate ��s����u���Real.conjugateN(���u���__name__u ���__module__u���__qualname__u���__doc__u ���__slots__u���abstractmethodu ���__float__u ���__trunc__u ���__floor__u���__ceil__u���Noneu ���__round__u ���__divmod__u���__rdivmod__u���__floordiv__u ���__rfloordiv__u���__mod__u���__rmod__u���__lt__u���__le__u���__complex__u���propertyu���realu���imagu ���conjugate(���u ���__locals__(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���Real����s(��� c�������������B���s\���|��Ee��Z�d��Z�d�Z�f��Z�e�e�d�d��������Z�e�e�d�d��������Z�d�d����Z �d�S( ���u���Rationalu6���.numerator and .denominator should be in lowest terms.c�������������C���s ���t����d��S(���N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���numerator��s����u���Rational.numeratorc�������������C���s ���t����d��S(���N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���denominator��s����u���Rational.denominatorc�������������C���s���|��j��|��j�S(���u��float(self) = self.numerator / self.denominator It's important that this conversion use the integer's "true" division rather than casting one side to float before dividing so that ratios of huge integers convert without overflowing. (���u ���numeratoru���denominator(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__float__ ��s����u���Rational.__float__N( ���u���__name__u ���__module__u���__qualname__u���__doc__u ���__slots__u���propertyu���abstractmethodu ���numeratoru���denominatoru ���__float__(���u ���__locals__(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���Rational��s���c�������������B���sI��|��Ee��Z�d��Z�d�Z�f��Z�e�d�d������Z�d�d����Z�e�d$�d�d�����Z �e�d�d ������Z �e�d �d������Z�e�d�d ������Z�e�d�d������Z �e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�e�d�d������Z�d�d����Z�e�d �d!������Z�e�d"�d#������Z�d$�S(%���u���Integralu@���Integral adds a conversion to int and the bit-string operations.c�������������C���s ���t����d�S(���u ���int(self)N(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__int__0��s����u���Integral.__int__c�������������C���s ���t��|����S(���u6���Called whenever an index is needed, such as in slicing(���u���int(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__index__5��s����u���Integral.__index__c�������������C���s ���t����d�S(���u4��self ** exponent % modulus, but maybe faster. Accept the modulus argument if you want to support the 3-argument version of pow(). Raise a TypeError if exponent < 0 or any argument isn't Integral. Otherwise, just implement the 2-argument version described in Complex. N(���u���NotImplementedError(���u���selfu���exponentu���modulus(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__pow__9��s���� u���Integral.__pow__c�������������C���s ���t����d�S(���u ���self << otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__lshift__D��s����u���Integral.__lshift__c�������������C���s ���t����d�S(���u ���other << selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rlshift__I��s����u���Integral.__rlshift__c�������������C���s ���t����d�S(���u ���self >> otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__rshift__N��s����u���Integral.__rshift__c�������������C���s ���t����d�S(���u ���other >> selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rrshift__S��s����u���Integral.__rrshift__c�������������C���s ���t����d�S(���u���self & otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__and__X��s����u���Integral.__and__c�������������C���s ���t����d�S(���u���other & selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rand__]��s����u���Integral.__rand__c�������������C���s ���t����d�S(���u���self ^ otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__xor__b��s����u���Integral.__xor__c�������������C���s ���t����d�S(���u���other ^ selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__rxor__g��s����u���Integral.__rxor__c�������������C���s ���t����d�S(���u���self | otherN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__or__l��s����u���Integral.__or__c�������������C���s ���t����d�S(���u���other | selfN(���u���NotImplementedError(���u���selfu���other(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���__ror__q��s����u���Integral.__ror__c�������������C���s ���t����d�S(���u���~selfN(���u���NotImplementedError(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__invert__v��s����u���Integral.__invert__c�������������C���s���t��t�|������S(���u���float(self) == float(int(self))(���u���floatu���int(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���__float__|��s����u���Integral.__float__c�������������C���s���|�� S(���u"���Integers are their own numerators.(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu ���numerator���s����u���Integral.numeratorc�������������C���s���d�S(���u!���Integers have a denominator of 1.i���(����(���u���self(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���denominator���s����u���Integral.denominatorN(���u���__name__u ���__module__u���__qualname__u���__doc__u ���__slots__u���abstractmethodu���__int__u ���__index__u���Noneu���__pow__u ���__lshift__u���__rlshift__u ���__rshift__u���__rrshift__u���__and__u���__rand__u���__xor__u���__rxor__u���__or__u���__ror__u ���__invert__u ���__float__u���propertyu ���numeratoru���denominator(���u ���__locals__(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���Integral+��s(��� N(���u���__doc__u���abcu���ABCMetau���abstractmethodu���__all__u���Numberu���Complexu���registeru���complexu���Realu���floatu���Rationalu���Integralu���int(����(����(����u,���/opt/alt/python33/lib64/python3.3/numbers.pyu���<module>���s���u u _